Процесс газообмена в легких

Дыхательная система

Дыхание — совокупность процессов, обеспечивающих поступление кислорода, использование его в окислении органических веществ и удаление углекислого газа и некоторых других веществ.

Человек дышит, поглощая из атмосферного воздуха кислород и выделяя в него углекислый газ. Каждой клетке для жизнедеятельности нужна энергия. Источник этой энергии — распад и окисление органических веществ, входящих в состав клетки. Белки, жиры, углеводы, вступая в химические реакции с кислородом, окисляются («сгорают»). При этом происходит распад молекул и освобождается заключенная в них внутренняя энергия. Без кислорода невозможны обменные превращения веществ в организме.

Запасов кислорода в организме человека и животных нет. Его непрерывное поступление в организм обеспечивает система органов дыхания. Накопление значительных количеств углекислого газа в результате обмена веществ вредно для организма. Удаление из организма СО2 также осуществляется органами дыхания.

Функция дыхательной системы — снабжение крови достаточным количеством кислорода и удаление из нее углекислого газа.

Различают три этапа дыхания: внешнее (легочное) дыхание — обмен газов в легких между организмом и средой; транспорт газов кровью от легких к тканям организма; тканевое дыхание — газообмен в тканях и биологическое окисление в митохондриях.

Внешнее дыхание

Внешнее дыхание обеспечивается системой органов дыхания (рис. 12.10), которая состоит из легких (где совершается газообмен между вдыхаемым воздухом и кровью) и дыхательных (воздухоносных) путей (по которым проходит вдыхаемый и выдыхаемый воздух).

Воздухоносные (дыхательные) пути включают: носовую полость, носоглотку, гортань, трахею и бронхи. Дыхательные пути делятся на верхние (носовая полость, носоглотка, гортань) и нижние (трахея и бронхи). Они имеют твердый скелет, представленный костями и хрящами, а изнутри выстланы слизистой оболочкой, снабженной мерцательным эпителием. Функции дыхательных путей: обогрев и увлажнение воздуха, защита от инфекции и пыли.

Полость носа поделена перегородкой на две половины. Она сообщается с наружной средой при помощи ноздрей, а сзади — с глоткой посредством хоан. Слизистая оболочка носовой полости имеет большое количество кровеносных сосудов. Проходящая по ним кровь согревает воздух. Железы слизистой выделяют слизь, увлажняющую стенки носовой полости и снижающую жизнедеятельность бактерий. На поверхности слизистой находятся лейкоциты, уничтожающие большое количество бактерий. Мерцательный эпителий слизистой задерживает и выводит наружу пыль. При раздражении ресничек носовых полостей возникает рефлекс чихания. Таким образом, в носовой полости воздух согревается, обеззараживается, увлажняется и очищается от ныли. В слизистой оболочке верхней части носовой полости имеются чувствительные обонятельные клетки, образующие орган обоняния. Из носовой полости воздух поступает в носоглотку, а оттуда в гортань.

Рис. 12.10. Строение дыхательной системы:

  • 1 — ротовая полость; 2 — носовая полость; 3 — язычок; 4 — язык; 5 — глотка; б — надгортанник; 7 — черпаловидный хрящ; 8 — гортань; 9 — пищевод;
  • 10 — трахея; 11 — верхушка легкого; 12, 17 — левое и правое легкое;
  • 13, 16 — бронхи; 14, 15 — альвеолы; 18 — полость трахеи; 19 — перстневидный хрящ; 20 — щитовидный хрящ; 21 — подъязычная кость; 22 — нижняя челюсть; 23 — преддверье; 24 — ротовое отверстие; 25 — твердое небо

Гортань образована несколькими хрящами: щитовидный хрящ (защищает гортань спереди), хрящевой надгортанник (защищает дыхательные пути при проглатывании пищи). Гортань состоит из двух полостей, которые сообщаются через узкую голосовую щель. Края голосовой щели образованы голосовыми сеялками. При выдыхании воздуха через сомкнутые голосовые связки происходит их вибрация, сопровождающаяся возникновением звука. Окончательное формирование звуков речи происходит при помощи языка, мягкого неба и губ. При раздражении ресничек гортани возникает рефлекс кашля. Из гортани воздух поступает в трахею.

Трахея образована 16—20 неполными хрящевыми кольцами, не позволяющими ей спадаться, а задняя стенка трахеи мягкая и содержит гладкие мышцы. Благодаря этому нища свободно проходит по пищеводу, который лежит позади трахеи.

В нижней части трахея делится на два главных бронха (правый и левый), которые проникают в легкие. В легких главные бронхи многократно ветвятся на бронхи первого, второго и т.д. порядков, образуя бронхиальное дерево. Бронхи восьмого порядка называют дольковыми. Они разветвляются на концевые бронхиолы, а те — на дыхательные бронхиолы, которые образуют альвеолярные мешочки, состоящие из альвеол. Альвеола — легочные пузырьки, имеющие форму полушария диаметром 0,2—0,3 мм. Их стенки состоят из однослойного эпителия и покрыты сетью капилляров. Через стенки альвеол и капилляров происходит обмен газами: из воздуха в кровь переходит кислород, а из крови в альвеолы поступают С()2 и пары воды.

Легкие — крупные парные органы конусообразной формы, расположенные в грудной клетке. Правое легкое состоит из грех долей, левое — из двух. В каждое легкое проходят главный бронх и легочная артерия, а выходят две легочные вены. Снаружи легкие покрыты легочной плеврой. Щель между оболочкой грудной полости и плеврой (плевральная полость) заполнена плевральной жидкостью, которая уменьшает трение легких о стенки грудной клетки. Давление в плевральной полости меньше атмосферного на 9 мм рт. ст. и составляет около 751 мм рт. ст.

Дыхательные движения. В легких нет мышечной ткани, и поэтому они не могут активно сокращаться. Активная роль в акте вдоха и выдоха принадлежит дыхательным мышцам: межреберным мышцам и диафрагме. При их сокращении объем грудной клетки увеличивается и легкие растягиваются. При расслаблении дыхательных мышц ребра опускаются до исходного уровня, купол диафрагмы приподнимается, объем грудной клетки, а следовательно, и легких уменьшается и воздух выходит наружу. Человек делает в среднем 15—17 дыхательных движений в минуту. При мышечной работе дыхание учащается в 2—3 раза.

Жизненная емкость легких. В состоянии покоя человек вдыхает и выдыхает около 500 см 3 воздуха (дыхательный объем). При глубоком вдохе человек может вдохнуть еще около 1500 см 3 воздуха (дополнительный объем). После выдоха он способен выдохнуть еще около 1500 см 3 (резервный объем). Эти три величины в сумме составляют жизненную емкость легких (ЖЕЛ) — это наибольшее количество воздуха, которое может человек выдохнуть после глубокого вдоха. Измеряют ЖЕЛ с помощью спирометра. Она является показателем подвижности легких и грудной клетки и зависит от пола, возраста, размеров тела и мышечной силы. У детей 6 лет ЖЕЛ равна 1200 см 3 ; у взрослых — в среднем 3500 см 3 ; у спортсменов она больше: у футболистов — 4200 см 3 , у гимнастов — 4300 см 3 , у пловцов — 4900 см 3 . Объем воздуха в легких превышает ЖЕЛ. Даже при самом глубоком выдохе в них остается около 1000 см 3 остаточного воздуха, поэтому легкие полностью не спадаются.

Регуляция дыхания. В продолговатом мозге расположен дыхательный центр. Одна часть его клеток связана с вдохом, другая — с выдохом. Импульсы передаются из дыхательного центра по двигательным нейронам к дыхательным мышцам и диафрагме, вызывая чередование вдоха и выдоха. Вдох рефлекторно вызывает выдох, выдох рефлектор- но вызывает вдох. На дыхательный центр оказывает влияние кора головного мозга: человек может на время задержать дыхание, изменить частоту и глубину его.

Читать еще:  Стероидные гормоны препараты

Накопление С02 в крови вызывает возбуждение дыхательного центра, что обусловливает учащение и углубление дыхания. Так осуществляется гуморальная регуляция дыхания.

Искусственное дыхание делают при остановке дыхания у утопленников, при поражении электрическим током, отравлении угарным газом и проч. Производят дыхание изо рта в рот или изо рта в нос. В выдыхаемом воздухе содержится 16—17% кислорода, что достаточно для обеспечения газообмена, а высокое содержание в выдыхаемом воздухе С()2 (3-4%) способствует гуморальной стимуляции дыхательного центра пострадавшего.

Транспорт газов

Кислород транспортируется к тканям в основном в составе окси- гемоглобина (ЕIЬО2). Небольшое количество С02 транспортируется от тканей к легким в составе карбгемоглобина (НЬС()2). Основная часть углекислого газа соединяется с водой, образуя углекислоту. Угольная кислота в тканевых капиллярах реагирует с ионами К’ и Na + , превращаясь в бикарбонаты. В составе бикарбонатов калия эритроцитов (меньшая часть) и бикарбонатов натрия плазмы крови (большая часть) углекислый газ переносится от тканей к легким.

Газообмен в легких и тканях

Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух в котором 02 — 16,3%, а С02 — 4%. Азот и инертные газы, входящие в состав воздуха, в дыхании не участвуют, и их содержание во вдыхаемом и выдыхаемом воздухе практически одинаково.

В легких кислород вдыхаемого воздуха через стенки альвеол и капилляров переходит в кровь, а С()2 из крови поступает в альвеолы легких. Движение газов происходит по законам диффузии, согласно которым газ проникает из среды, где его содержится больше, в среду с меньшим содержанием его. Газообмен в тканях также совершается но законам диффузии.

Гигиена дыхания. Для укрепления и развития органов дыхания важны правильное дыхание (вдох короче выдоха), дыхание через нос, развитие грудной клетки (чем она шире, тем лучше), борьба с вредными привычками (курение), чистый воздух.

Важной задачей является охрана воздушной среды от загрязнений. Одним из мероприятий по охране является озеленение городов и поселков, так как растения обогащают воздух кислородом и очищают его от ныли и вредных примесей.

22. Механизм газообмена в легких и тканях.

Газообмен в легких и тканях.

В легких происходит газообмен между поступающим в альвеолы воздухом и протекающей по капиллярам кровью. Интенсивному газообмену между воздухом альвеол и кровью способствует малая толщина так называемого аэрогематического барьера. Он образован стенками альвеолы и кровеносного капилляра. Толщина барьера – около 2,5 мкм. Стенки альвеол построены из однослойного плоского эпителия, покрытого изнутри тонкой пленкой фосфолипида – сурфактантом, который препятствует сли- панию альвеол при выдохе и понижает поверхностное натяжение.

Альвеолы оплетены густой сетью кровеносных капилляров, что сильно увеличивает площадь, на которой совершается газообмен между воздухом и кровью.

При вдохе концентрация (парциальное давление) кислорода в альвеолах намного выше (100 мм рт. ст.), чем в венозной крови (40 мм рт. ст.)протекающей по легочным капиллярам. Поэтому кислород легко выходит

из альвеол в кровь, где он быстро вступает в соединение с гемоглобином эритроцитов. Одновременно углекислый газ, концентрация которого в венозной крови капилляров высокая (47 мм рт. ст.), диффундирует в альвеолы, где его парциальное давление ниже (40 мм рт. ст.). Из альвеол легкого углекислый газ выводится с выдыхаемым воздухом.

Таким образом, разница в давлении (напряжение) кислорода и углекислого газа в альвеолярном воздухе, в артериальной и венозной крови дает возможность кислороду диффундировать из альвеол в кровь, а угле-

кислому газу из крови в альвеолы.

Благодаря особому свойству гемоглобина вступать в соединение с кислородом и углекислым газом кровь способна поглощать эти газы в значительном количестве. В 1000 мл артериальной крови содержится до

20 мл кислорода и до 52 мл углекислого газа. Одна молекула гемоглобина способна присоединить к себе 4 молекулы кислорода, образуя неустойчивое соединение – оксигемоглобин.

В тканях организма в результате непрерывного обмена веществ и интенсивных окислительных процессов расходуется кислород и образуется углекислый газ. При поступлении крови в ткани организма гемоглобин отдает клеткам и тканям кислород. Образовавшийся при обмене веществ углекислый газ переходит из тканей в кровь и присоединяется к гемоглобину. При этом образуется непрочное соединение – карбогемоглобин. Быстрому соединению гемоглобина с углекислым газом способствует находящийся в эритроцитах фермент карбоангидраза.

Гемоглобин эритроцитов способен соединяться и с другими газами,например, с окисью углерода, при этом образуется довольно прочное соединение карбоксигемоглобин.

Недостаточное поступление кислорода в ткани (гипоксия) может возникнуть при недостатке его во вдыхаемом воздухе. Анемия – уменьшение содержания гемоглобина в крови – появляется, когда кровь не может переносить кислород.

При остановке, прекращении дыхания развивается удушье (асфиксия). Такое состояние может случиться при утоплении или других неожиданных обстоятельствах. При остановке дыхания, когда сердце еще про-

должает работать, делают искусственное дыхание с помощью специальных аппаратов, а при их отсутствии – по методу «рот в рот», «рот в нос»или путем сдавливания и расширения грудной клетки.

23. ПОНЯТИЕ О ГИПОКСИИ. ОСТРЫЕ И ХРОНИЧЕСКИЕ ФОРМЫ. ВИДЫ ГИПОКСИЙ.

Одним из обязательных условий жизни организма является непрерывное образование и потребление им энергии. Она расхо­дуется на обеспечение метаболизма, на сохранение и обновление структурных элементов органов и тканей, а также на осуществле­ние их функции. Недостаток энергии в организме приводит к су­щественным нарушениям обмена веществ, морфологическим из­менениям и нарушениям функций, а нередко — к гибели органа и даже организма. В основе дефицита энергии лежит гипоксия.

Гипоксия — типовой патологический процесс, характеризую­щийся как правило снижением содержания кислорода в клетках и тканях. Развивается в результате недостаточности биологиче­ского окисления и является основой нарушений энергетического обеспечения функций и синтетических процессов организма.

В зависимости от причин и особенностей механизмов развития выделяют следующие типы:

Перегрузочный (гипоксия нагрузки).

В зависимости от распространенности в организме гипоксия может быть общей или местной (при ишемии, стазе или веноз­ной гиперемии отдельных органов и тканей).

В зависимости от тяжести течения выделяют легкую, умеренную, тяжелую и критическую гипоксию, чреватую гибелью организма.

В зависимости от скорости возникновения и длительности тече­ния гипоксия может быть:

молниеносной — возникает в течение нескольких десятков секунд и нередко завершается смертью;

острой — возникает в течение нескольких минут и может длиться несколько суток:

хронической — возникает медленно, длится несколько не­дель, месяцев, лет.

Характеристика отдельных типов гипоксии

Причина: уменьшение парциального давления кислорода Р2 во вдыхаемом воздухе, что наблюдается при высоком подъеме в го­ры («горная» болезнь) или при разгерметизации летательных ап­паратов («высотная» болезнь), а также при нахождении людей в замкнутых помещениях малого объема, при работах в шахтах, ко­лодцах, в подводных лодках.

Основные патогенные факторы:

гипоксемия (снижение содержания кислорода в крови);

гипокапния (снижение содержания С02), которая развивается в результате увеличения частоты и глубины дыханий и приво­дит к снижению возбудимости дыхательного и сердечно-сосу­дистого центров головного мозга, что усугубляет гипоксию.

Респираторный (дыхательный) тип

Причина: недостаточность газообмена в легких при дыхании, что может быть обусловлено снижением альвеолярной вентиля-

ции или затруднением диффузии кислорода в легких и может на­блюдаться при эмфиземе легких, пневмое. Основные патогенные факторы:

артериальная гипоксемия. например при пневмое, гиперто­нии малого круга кровообращения и др.;

гиперкапния, т. е. увеличение содержания С02;

гипоксемия и гиперкапния характерны и для асфиксии — удушения (прекращения дыхания).

Читать еще:  Сдала кровь на гормоны

Циркуляторный (сердечно-сосудистый) тип

Причина: нарушение кровообращения, приводящее к недоста­точному кровоснабжению органов и тканей, что наблюдается при массивной кровопотере, обезвоживании организма, нарушениях функции сердца и сосудов, аллергических реакциях, нарушениях электролитного баланса и др.

Основной патогенетический фактор — гипоксемия венозной крови, так как в связи с ее медленным протеканием в капиллярах происходит интенсивное поглощение кислорода, сочетающееся с увеличением артериовенозной разницы по кислороду.

Гемический (кровяной) тип

Причина: снижение эффективной кислородной емкости крови. Наблюдается при анемиях, нарушении способности гемоглобина связывать, транспортировать и отдавать кислород в тканях (на­пример, при отравлении угарным газом или при гипербарической оксигенации).

Основной патогенетический фактор — снижение объемного содержания кислорода в артериальной крови, а также падение напряжения и содержания кислорода в венозной крови.

•нарушение способности клеток поглощать кислород;

•уменьшение эффективности биологического окисления в результате разобщения окисления и фосфорилирования. Развивается при угнетении ферментов биологического окисле­ния, например при отравлении цианидами, воздействии ионизи­рующего излучения и др.

Основное патогенетическое звено — недостаточность биологи­ческого окисления и как следствие дефицит энергии в клетках. При этом отмечаются нормальное содержание и напряжение ки­слорода в артериальной крови, повышение их в венозной крови, снижение артериовенозной разницы по кислороду.

Причина: чрезмерная или длительная гиперфункция какого-либо органа или ткани. Чаще это наблюдается при тяжелой фи­зической работе.

Основные патогенетические звенья:значительная венозная гипоксемия;гиперкапния.

Причина: первичный дефицит субстратов окисления, как пра­вило, глюкозы. Так. прекращение поступления глюкозы в голов­ной мозг уже через 5—8 мин ведет к дистрофическим изменени­ям и гибели нейронов.

Основной патогенетический фактор дефицит энергии в форме АТФ и недостаточное энергоснабжение клеток.

Причина: действие факторов, обусловливающих включение различных типов гипоксии. По существу любая тяжелая гипок­сия, особенно длительно текущая, является смешанной.

Гипоксия является важнейшим звеном очень многих патоло­гических процессов и болезней, а развиваясь в финале любых за­болеваний, она накладывает свой отпечаток на картину болезни. Однако течение гипоксии может быть различным, и поэтому как острая, так и хроническая гипоксия имеют свои морфологиче­ские особенности.

Острая гипоксия, которая характеризуется быстрым наруше­ниями в тканях окислительно-восстановительных процессов, на­растанием гликолиза, закислением цитоплазмы клеток и внекле­точного матрикса, приводит к повышению проницаемости мем­бран лизосом, выходу гидролаз, разрушающих внутриклеточные структуры. Кроме того, гипоксия активирует перекисное окисле­ние липидов. появляются свободнорадикальные перекисные со­единения, которые разрушают мембраны клеток. В физиологиче­ских условиях в процессе обмена веществ постоянно возникает

легкая степень гипоксии клеток, стромы, стенок капилляров и артериол. Это является сигналом к повышению проницаемости стенок сосудов и поступлению в клетки продуктов метаболизма и кислорода. Поэтому острая гипоксия, возникающая в условиях патологии, всегда характеризуется повышением проницаемости стенок артериол, венул и капилляров, что сопровождается плаз-моррагией и развитием периваскулярных отеков. Резко выражен­ная и относительно длительная гипоксия приводит к развитию фибриноидного некроза стенок сосудов. В таких сосудах крово­ток прекращается, что усиливает ишемию стенки и происходит диапедез эритроцитов с развитием периваскулярных кровоизлия­ний. Поэтому, например, при острой сердечной недостаточности, которая характеризуется быстрым развитием гипоксии, плазма крови из легочных капилляров поступает в альвеолы и возникает острый отек легких. Острая гипоксия мозга приводит к перива-скулярному отеку и набуханию ткани мозга с вклинением его стволовой части в большое затылочное отверстие и развитием ко­мы, приводящей к смерти.

Хроническая гипоксия сопровождается долговременной пере­стройкой обмена веществ, включением комплекса компенсатор­ных и приспособительных реакций, например гиперплазией кост­ного мозга для увеличения образования эритроцитов. В паренхи­матозных органах развивается и прогрессирует жировая дистро­фия и атрофия. Кроме того, гипоксия стимулирует в организме фибробластическую реакцию, активизируются фибробласты, в результате чего параллельно с атрофией функциональной ткани нарастают склеротические изменения органов. На определенном этапе развития заболевания изменения, обусловленные гипокси­ей, способствуют снижению функции органов и тканей с разви­тием их декомпенсации.

Строение лёгких. Газообмен в лёгких и тканях

Урок 28. Биология 8 класс

Конспект урока «Строение лёгких. Газообмен в лёгких и тканях»

Система органов дыхания состоит из воздухоносных путей (которые включают носовую полость, носоглотку, гортань, трахею и бронхи) и самих лёгких.

У человека два лёгкихлевое и правое. Здоровые лёгкие розовые, мягкие и напоминают губку. Правое лёгкое состоит из трёх долей, а левоетолько из двух. Они занимают почти всю грудную клетку. Легкие достаточно плотно прилегают к её стенкам, оставляя место только для сердца, крупных сосудов, пищевода и трахеи. Нижняя расширенная часть лёгких прилегает к дыхательной мышце – диафрагме.

Снаружи лёгкие покрыты плотной оболочкойлёгочной плеврой. Она состоит из двух листков. Один из них – наружный, или пристеночный, выстилает грудную клетку изнутри, а другой (внутренний) покрывает всю поверхность лёгких.

Между наружным и внутренним листками находится плевральная полость. Она заполнена жидкостью, которая уменьшает трение лёгких о стенки грудной полости при дыхании. В плевральной полости отсутствует воздух.

Если в неё ввести иглу, соединённую с манометром, можно установить, что давление в ней отрицательное (на 6–9 миллиметров ртутного столба ниже атмосферного).

Эта разница давлений создаёт присасывающую силу, благодаря которой лёгкие прижимаются к грудной клетке. Поэтому они всегда находятся в расправленном состоянии и следуют за движениями грудной клетки.

Если в результате повреждения грудной клетки в плевральную полость попадает воздух, лёгкие спадаются и поджимаются к трахее. При этом поджатые лёгкие уже не соприкасаются с грудной клеткой, и поэтому они не следуют за её дыхательными движениями, или их объём меняется в гораздо меньшей степени. В таком случае эффективный газообмен становится невозможным. Если в результате несчастного случая обе половины плевральной полости окажутся вскрытыми, лёгкие сожмутся, дыхательная система выйдет из строя и наступит смерть.

Бронхи входят в лёгкие и там ветвятся, образуя бронхиальное «дерево». Тонкие бронхи переходят в бронхиолы.

Бронхиолы заканчиваются множеством лёгочных пузырьков, которые называются альвеолами. В лёгких насчитывается около 350 миллионов альвеол. Они густо оплетены капиллярами.

Через стенки альвеол происходит обмен газами. Такой процесс возможен благодаря тому, что стенки альвеол состоят из одного слоя эпителиальных клеток.

Газообмен в лёгких и тканях состоит из трёх этапов:

· Внешнее, или лёгочное, дыхание

· Транспорт газов кровью

· Внутреннее, или тканевое, дыхание

Человек дышит атмосферным воздухом, в котором содержится 20,9 % кислорода, 0,03 % углекислого газа и 79 % азота. Когда человек выдыхает воздух, его состав уже другой: содержание кислорода в нем уменьшается и составляет 16,3 %, а углекислого газа, наоборот, увеличивается до 4 %. Количество азота не изменяется. За сутки в лёгкие поступает до 500 литров кислорода.

После того как воздух прошёл по воздухоносным путям и попал в лёгкие, в альвеолах происходит газообмен между ними и кровью.

В альвеолах кислорода всегда больше, чем в крови оплетающих их капилляров. Поэтому кислород перемещается оттуда, где его больше, туда, где его меньше (из альвеол в капилляры). Здесь кровь насыщается кислородом и становится артериальной.

Основным переносчиком кислорода ко всем клеткам организма является гемоглобин крови, содержащийся в эритроцитах.

Гемоглобин связывается с кислородом и превращается в оксигемоглобин. По большому кругу кровообращения артериальная кровь течёт к органам тела человека.

В тканях оксигемоглобин распадается на гемоглобин и кислород. Далее кислород переходит из крови в тканевую жидкость, а затем в сами клетки.

Из клеток в тканевую жидкость выделяется углекислый газ, который далее попадает в кровь. И она из артериальной превращается в венозную. Углекислый газ переносится кровью в виде химических соединений, а также в связанном с гемоглобином состоянии. Такое соединение называется карбгемоглобин. Током крови по малому кругу кровообращения углекислый газ переносится в лёгкие, где по описанным выше механизмам диффузии происходит обмен газов. Из крови, которая содержит большее количество углекислого газа, он проникает из капилляров в лёгкие. Так происходит газообмен в нашем организме.

Читать еще:  С какого возраста можно давать ребенку клюкву

Лёгкие служат также органами выделения. С поверхности альвеол постоянно выделяется углекислый газ и испаряется вода, которая в виде пара поступает в альвеолы, а затем по дыхательным путям выводится из организма.

Итог урока. В грудной клетке человека располагаются левое и правое лёгкие. Снаружи они покрыты лёгочной плеврой. Лёгкие человека имеют альвеолярное строение. Основная функция лёгких – осуществление газообмена между внешней средой и организмом. Газообмен в лёгких и тканях состоит из трёх этапов: лёгочное дыхание, транспорт газов кровью и тканевое дыхание.

Что такое газообмен в крови, в легких и тканях? Особенности газообмена

Что такое газообмен? Без него не сможет обойтись практически ни одно живое существо. Газообмен в легких и тканях, а также крови помогает насыщать клетки питательными веществами. Благодаря ему мы получаем энергию и жизненные силы.

Что такое газообмен?

Для существования живым организмам необходим воздух. Он представляет собой смесь из множества газов, основную долю которых составляют кислород и азот. Оба эти газа являются важнейшими компонентами для обеспечения нормальной жизнедеятельности организмов.

В ходе эволюции разные виды выработали свои приспособления для их получения, у одних развились легкие, у других — жабры, а третьи используют только кожные покровы. При помощи этих органов осуществляется газообмен.

Что такое газообмен? Это процесс взаимодействия внешней среды и живых клеток, в ходе которого происходит обмен кислорода и углекислого газа. Во время дыхания вместе с воздухом в организм поступает кислород. Насыщая все клетки и ткани, он участвует в окислительной реакции, превращаясь в углекислый газ, который выводится из организма вместе с другими продуктами метаболизма.

Газообмен в легких

Каждый день мы вдыхаем больше 12 килограмм воздуха. В этом нам помогают легкие. Они являются самым объемным органом, способным вместить до 3 литров воздуха за один полный глубокий вдох. Газообмен в легких происходит при помощи альвеол – многочисленных пузырьков, которые переплетены с кровеносными сосудами.

Воздух попадает в них через верхние дыхательные пути, проходя трахею и бронхи. Соединенные с альвеолами капилляры забирают воздух и разносят его по кровеносной системе. В то же время они отдают альвеолам углекислый газ, который покидает организм вместе с выдохом.

Процесс обмена между альвеолами и сосудами называется двусторонней диффузией. Он происходит всего за несколько секунд и осуществляется благодаря разнице в давлении. У насыщенного кислородом атмосферного воздуха оно больше, поэтому он устремляется к капиллярам. Углекислый газ имеет меньшее давление, отчего и выталкивается в альвеолы.

Кровообращение

Без кровеносной системы газообмен в легких и тканях был бы невозможен. Наше тело пронизано множеством кровеносных сосудов различной длины и диаметра. Они представлены артериями, венами, капиллярами, венулами и т. д. В сосудах кровь непрерывно циркулирует, способствуя обмену газов и веществ.

Газообмен в крови осуществляется при помощи двух кругов кровообращения. При дыхании воздух начинается двигаться по большому кругу. В крови он переносится, прикрепляясь к специальному белку гемоглобину, который содержится в эритроцитах.

Из альвеол воздух попадает в капилляры, а затем в артерии, направляясь прямо к сердцу. В нашем организме оно исполняет роль мощного насоса, перекачивая насыщенную кислородом кровь к тканям и клеткам. Они, в свою очередь, отдают кровь, наполненную углекислым газом, направляя её по венулам и венам обратно к сердцу.

Проходя через правое предсердие, венозная кровь завершает большой круг. В правом желудочке начинается малый круг кровообращения. По нему кровь перегоняется в легочный ствол. Она движется по артериям, артериолам и капиллярам, где совершает обмен воздухом с альвеолами, чтобы начать цикл заново.

Обмен в тканях

Итак, мы знаем, что такое газообмен легких и крови. Обе системы переносят газы и обмениваются ими. Но ключевая роль принадлежит тканям. В них происходят главные процессы, изменяющие химический состав воздуха.

Артериальная кровь насыщает клетки кислородом, который запускает в них целый ряд окислительно-восстановительных реакций. В биологии они называются циклом Кребса. Для их осуществления необходимы ферменты, которые также приходят вместе с кровью.

В ходе цикла Кребса образуются лимонная, уксусная и другие кислоты, продукты для окисления жиров, аминокислот и глюкозы. Это один из важнейших этапов, который сопровождает газообмен в тканях. Во время его протекания освобождается энергия, необходимая для работы всех органов и систем организма.

Для осуществления реакции активно используется кислород. Постепенно он окисляется, превращаясь в углекислый газ — СО2, который выделяется из клеток и тканей в кровь, потом в легкие и атмосферу.

Газообмен у животных

Строение организма и систем органов у многих животных значительно варьируется. Наиболее схожими с человеком являются млекопитающие. Небольшие животные, например планарии, не имеют сложных систем для обмена веществами. Для дыхания они используют внешние покровы.

Амфибии для дыхания используют кожные покровы, а также рот и легкие. У большинства животных, обитающих в воде, газообмен осуществляется при помощи жабр. Они представляют собой тонкие пластины, соединенные с капиллярами и переправляющие в них кислород из воды.

Членистоногие, например многоножки, мокрицы, пауки, насекомые, не обладают легкими. По всей поверхности тела у них расположены трахеи, которые направляют воздух прямо к клеткам. Такая система позволяет им быстро передвигаться, не испытывая одышки и усталости, ведь процесс образования энергии происходит быстрее.

Обмен газов у растений

В отличие от животных, у растений газообмен в тканях включает потребление и кислорода, и углекислого газа. Кислород они потребляют в процессе дыхания. Растения не обладают для этого специальными органами, поэтому воздух поступает в них через все части тела.

Как правило, листья имеют наибольшую площадь, и основное количество воздуха приходится именно на них. Кислород поступает в них через небольшие отверстия между клетками, называемые устьицами, перерабатывается и выводится уже в виде углекислого газа, как и у животных.

Отличительной особенностью растений является способность к фотосинтезу. Так, они могут преобразовывать неорганические компоненты в органические при помощи света и ферментов. Во время фотосинтеза поглощается углекислый газ и производится кислород, поэтому растения являются настоящими «фабриками» по обогащению воздуха.

Особенности

Газообмен является одной из важнейших функций любого живого организма. Он осуществляется при помощи дыхания и кровообращения, способствуя освобождению энергии и обмену веществ. Особенности газообмена заключаются в том, что он не всегда протекает одинаково.

В первую очередь он невозможен без дыхания, его остановка в течение 4 минут способна привести к нарушениям работы клеток мозга. В результате этого организм умирает. Существует множество заболеваний, при которых наблюдается нарушение газообмена. Ткани не получают достаточно кислорода, что замедляет их развитие и функции.

Неравномерность газообмена наблюдается и у здоровых людей. Он значительно увеличивается при усиленной работе мышц. Буквально за шесть минут он достигает предельной мощности и придерживается её. Однако при усилении нагрузки количество кислорода может начать увеличиваться, что также неприятно скажется на самочувствии организма.

Ссылка на основную публикацию
Adblock
detector